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Special-Purpose Arithmetic Circuits and Techniques 
 

ARITHMETIC CIRCUITS 
 

INTEGER/FX MULTIPLICATION 
 
UNSIGNED MULTIPLICATION 
 Sequential algorithm: 

 

 

P  0, Load A,B 

while B  0 
   if b0 = 1 then 

      P  P + A 

   end if 

   left shift A 

   right shift B 

end while 

Example: 
 
 
 
 
 
 
 
P  0, A  1111, B  1101 

b0=1  P  P + A = 1111.        A  11110, B  110 

b0=0  P  P = 1111.            A  111100, B  11 

b0=1  P  P + A = 1111 + 111100 = 1001011.       A  1111000, B  1 

b0=1  P  P + A = 1001011 + 1111000 = 11000011.  A  11110000, B  0 

 
 Iterative Multiplier Architecture (N-bit by M-bit): FSM + Datapath circuit. 

𝑠𝑐𝑙𝑟: synchronous clear. In this case, if 𝑠𝑐𝑙𝑟 =  1 and 𝐸 = 1, the register contents are initialized to 0. 

The solution is computed in 𝑀 + 1 cycles. 
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Example (timing diagram): N=M=4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED MULTIPLICATION 
 Based on the iterative unsigned multiplier: 
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INTEGER/FX DIVISION 
 
UNSIGNED DIVISION 
 Unsigned division: Iterative case 

For the implementation, we follow the hand-division method. We grab bits of A one by one and compare it with the divisor. 
If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of 𝑄. The example 

below shows the case where 𝐴 =  10001100; 𝐵 =  1001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A: N=8 bits 

B: M=4 bits 

R: M=4 bits 

Intermediate subtraction 
requires M+1 bits 

Q: N=8 bits 

A  10001100, B  1001, R  00000000 

i = 7, a7 = 1: R  00001 < 1001  q7 = 0 

i = 6, a6 = 0: R  00010 < 1001  q6 = 0 

i = 5, a5 = 0: R  00100 < 1001  q5 = 0 

i = 4, a4 = 0: R  01000 < 1001  q4 = 0 

i = 3, a3 = 1: R  10001  1001  q3 = 1, R  10001 – 1001 = 01000 

i = 2, a2 = 1: R  10001  1001  q2 = 1, R  10001 – 1001 = 01000 

i = 1, a1 = 0: R  10000  1001  q1 = 1, R  10000 – 1001 = 00111 

i = 0, a0 = 0: R  01110  1001  q0 = 1, R  01110 – 1001 = 00101 

 Q  00001111, R  0101 

 
 An iterative architecture is depicted in the figure for A with 𝑁 bits and B with 𝑀 bits, 𝑁 ≥ 𝑀. The register 𝑅 stores the 

remainder. At every clock cycle, we either: i) shift in the next bit of A, or ii) shift in the next bit of A and subtract B.  
 (𝑀 + 1)-bit unsigned subtractor: We can apply 2C operation to B. If the subtraction is negative, 𝑐𝑜𝑢𝑡 =  0. If the subtraction 

is positive, 𝑐𝑜𝑢𝑡 = 1 (here, we only need to capture 𝑅 with 𝑀 bits). This determines 𝑞𝑖, which is shifted into the register A, 

which after 𝑁 cycles holds 𝑄. 
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Example (timing diagram 𝑁 = 5, 𝑀 = 4). i) DA = 27, DB = 9, ii) DA = 20, DB = 7 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
SIGNED MULTIPLICATION 
 Based on the iterative unsigned multiplier 
 

 Signed division: In this case, we first take the absolute value of the operators A and B. Depending on the sign of these 
operators, the division result (positive) of abs(A)/abs(B) might require a sign change. 
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INTEGER/FX ACCUMULATOR 
 
DIGITAL SYSTEM  (FSM +  Datapath circuit) 
 sclr: Synchronous clear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Finite State Machine (FSM): 
 
 
 
 
 
 
 
 
 
 
 Algorithmic State Machine (ASM): 
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FLOATING POINT CIRCUITS 
 
FLOATING POINT ADDER/SUBTRACTOR 
 𝑒1, 𝑒2: biased exponents. Note that |𝑒1 − 𝑒2| is equal to the subtraction of the unbiased exponents. 

 
 U_ABS_SIGN: This block computes |𝑒1 − 𝑒2|. It also generates the signal 𝑠𝑚. 

𝑒1, 𝑒2 ∈ [0, 2𝐸 − 1] →  𝑒1 − 𝑒2 ∈ [−(2𝐸 − 1), 2𝐸 − 1], |𝑒1 − 𝑒2| ∈ [0, 2𝐸 − 1] . 
 𝑒1 ≥ 𝑒2 → 𝑠𝑚 = 0, 𝑒𝑝 = 𝑒1, 𝑓𝑥 = 𝑓2, 𝑓𝑦 = 𝑓1, 𝑏𝑥 = 𝑏2, 𝑏𝑦 = 𝑏1 

 𝑒1 < 𝑒2 → 𝑠𝑚 = 1, 𝑒𝑝 = 𝑒2, 𝑓𝑥 = 𝑓1, 𝑓𝑦 = 𝑓2, 𝑏𝑥 = 𝑏1, 𝑏𝑦 = 𝑏2 

 
 Denormal numbers: They occur if 𝑒1 = 0 or 𝑒2 = 0: 

 𝑒1 = 0 → 𝑏1 = 0. 𝑒1 ≠ 0 → 𝑏1 = 1.  𝑒2 = 0 → 𝑏2 = 0. 𝑒2 ≠ 0 → 𝑏2 = 1. 

 
 SWAP blocks: In floating point addition/subtraction, we usually require alignment shift: one operator (called 𝑠𝑥) is divided 

by  2|𝑒1−𝑒2|, while the other (called 𝑠𝑦) is not divided. 

 First SWAP block: It generates 𝑠𝑥 and 𝑠𝑦 out of 𝑠1 and 𝑠2. That way we only feed 𝑠𝑥 to the barrel shifter. 

 Second SWAP block: We execute 𝐴 ± 𝐵. For proper subtraction, we must have the minuend 𝑡1 (either 𝑠1 or 
𝑠1

2|𝑒1−𝑒2|) on 

the left hand side, and the subtrahend 𝑡2 (either 𝑠2 or 
𝑠2

2|𝑒1−𝑒2|) on the right hand side. This blocks generates 𝑡1 and 𝑡2. 

  

 𝑠𝑚 𝑒𝑝 𝑠𝑥 𝑠𝑦 𝑡1 𝑡2 

𝑒1 ≥ 𝑒2 0 𝑒1 𝑠2 = 𝑏2. 𝑓2 𝑠1 = 𝑏1. 𝑓1 𝑠1 
𝑠2

2|𝑒1−𝑒2|
 

𝑒1 < 𝑒2 1 𝑒2 𝑠1 = 𝑏1. 𝑓1 𝑠2 = 𝑏2. 𝑓2 
𝑠1

2|𝑒1−𝑒2|
 𝑠2 

 
 Barrel shifter 2-i: This circuit performs alignment of 𝑠𝑥, where we always shift to the right by |𝑒1 − 𝑒2| bits. 

 
 SM to 2C: Sign and magnitude to 2’s complement converter. If the sign (sg1, sg2) is 0, then only a 0 is appended to the 

MSB. If the sign is 1, we get the negative number in 2C representation. Output bit-width: 𝑃 + 2 bits.  

 
 Main adder/subtractor: This circuit operates in 2C arithmetic. Note that we must sign-extend the (𝑃 + 2)-bit operands to 

𝑃 + 3 bits. 

Input operands  [−2𝑃+1 + 1, 2𝑃+1 − 1], Output result  [−2𝑃+2 + 2, 2𝑃+2 − 2]. 
 
 U_ABS block: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned 

number. The absolute value  [0, 2𝑃+2 − 2], this only requires 𝑃 + 2 bits in unsigned representation. 

 
 Leading Zero Detector (LZD): This circuit outputs a number that indicates the amount of shifting required to normalize 

the result of the main adder/subtractor. It is also used to adjust the exponent. This circuit is commonly implemented using 
a priority encoder. 𝑟𝑒𝑠𝑢𝑙𝑡 ∈ [−1, 𝑝]. The result is provided as a sign and magnitude. 

 
result output sign Actions 

[0, 𝑝] 𝑠ℎ ∈ [0, 𝑝] 0 
The barrel shifter needs to shift to the left by 𝑠ℎ bits. 

Exponent adder/subtractor needs to subtract 𝑠ℎ from the exponent 𝑒𝑝. 

−1 𝑠ℎ = 1 1 
The barrel shifter needs to shift to the right by 1 bit. 
Exponent adder/subtractor needs to add 1 to the exponent 𝑒𝑝. 

 
 Exponent adder/subtractor: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are 

unsigned, we zero-extend to 𝐸 + 1 bits. Note that for ordinary numbers, 𝑒𝑝 ∈ [1, 2𝐸 − 2]. The (𝐸 + 1)-bit result (biased 

exponent) cannot be negative: at most, we subtract 𝑝 from 𝑒𝑝, or add 1. Thus, we use the unsigned portion: 𝐸 bits (LSBs). 

 
 Barrel shifter 2i: This performs normalization of the final summation. We shift to the left (from 0 to 𝑃 bits) or to the right 

(1 bit). The normalization step might incur in truncation of the LSBs. 
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 This circuit works for ordinary numbers. 
 𝑁𝑎𝑁, ±∞: not considered. 

 Denormal numbers: not implemented: this would require |𝑒1 − 𝑒2| = |1 − 𝑒2|  when 𝑒1 = 0, or |𝑒1 − 1| when 𝑒2 = 0. But 
we implement 𝐴 ± 𝐵 when 𝐴 = 0, 𝐵 = 0, 𝐴 = 𝐵 = 0.  

If 𝐴 = 0 or 𝐵 = 0, then 𝑠𝑥 = 0 (barrel shifter input). So, the incorrect |𝑒1 − 𝑒2| does not matter; 𝑒𝑝 will also be correct. 

As for the biased exponent 𝑒, if 𝑡1 ± 𝑡2 = 0, then 𝐴 ± 𝐵 = 0, and we must make 𝑒 = 0 (we use a multiplexer here). 
 After normalization, the unbiased 𝑒 might be 2𝐸 − 1. This indicates overflow, but we would need to make 𝑓 = 0. We do 

not implement this, so overflow is not detected. 
 
 Typical cases: 

 Single Precision: E = 8, P = 23.  
 Double Precision: E = 8, P = 52. 
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FLOATING POINT MULTIPLIER AND DIVIDER 
 
 Multiplier: An unsigned multiplier is required. If we use a sequential multiplier, an FSM is required to control the dataflow. 

 We need to add the unbiased exponents: 𝑒𝑝 = 𝑒1 + 𝑒2. Here, a simple unsigned adder suffices. Since this operation adds 

2 × 𝑏𝑖𝑎𝑠 to ep, we subtract bias from the final adjusted exponent 𝑒𝑥. 

 The multiplier will require 2P+2 bits. Here, we need to truncate to P+2 bits. 
 
 Divider: An unsigned divider is required. If we use a sequential divider, an FSM is required to control the dataflow. 

 We need to subtract the unbiased exponents: 𝑒𝑝 = 𝑒1 − 𝑒2. This requires us to operate in 2C arithmetic. Since this 

operation gets rid of the bias, we need to add the 𝑏𝑖𝑎𝑠 = 2𝐸−1 − 1 to the final adjusted exponent 𝑒𝑥. 

 The divider can include any number of extra fractional bits. We use P fractional bits of precision. 
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CORDIC (COORDINATE ROTATION DIGITAL COMPUTER) ALGORITHM 
 
CIRCULAR CORDIC 
 The original circular CORDIC algorithm is described by the following iterative equations, where 𝑖 is the index of the iteration 

(𝑖 =  0, 1, 2, 3, …). Depending on the mode of operation, the value of 𝛿𝑖 is either +1 or –1: 

𝑥𝑖+1 = 𝑥𝑖 + 𝑖𝑦𝑖2−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑇𝑎𝑛−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠𝑧0 − 𝑦0𝑠𝑖𝑛𝑧0)

𝑦𝑛 = 𝐴𝑛(𝑦0𝑐𝑜𝑠𝑧0 + 𝑥0𝑠𝑖𝑛𝑧0)

𝑧𝑛 = 0
 

𝑥𝑛 = 𝐴𝑛√𝑥0
2 + 𝑦0

2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧0 + 𝑡𝑎𝑛−1(𝑦0 𝑥0⁄ )

 

𝐴𝑛 ← ∏ √1 + 2−2𝑖𝑁−1
𝑖=0 . For 𝑁 →∝ , 𝐴𝑛 = 1.647. The 𝑡𝑎𝑛−1 function here has a different definition, as the values it compute 

lie in the range [−180°, 180°], i.e., it indicates the quadrant where the point (𝑥0, 𝑦0) lies. 

 
 With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0  and the operation mode, the following functions can be directly computed: 

 𝑦0 = 0, 𝑥0 = 1 𝐴𝑛⁄ , rotation mode  𝑥𝑛 = 𝑐𝑜𝑠𝑧0, 𝑦𝑛 = 𝑠𝑖𝑛𝑧0 

 𝑧0 = 0, 𝑥0 = 1, vectoring mode   𝑧𝑛 = 𝑡𝑎𝑛−1(𝑦0) 

 𝑥0 = 𝑎, 𝑦0 = 𝑏, vectoring mode   𝑥𝑛 = 𝐴𝑛√𝑎2 + 𝑏2. We need to post-scale the output. 

 
LINEAR CORDIC 
 This is an extension to the circular CORDIC. No scaling corrections are needed. (𝑖 =  1, 2, 3, …). 

𝑥𝑖+1 = 𝑥𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 2−𝑖
 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝑥1

𝑦𝑛 = 𝑦1 + 𝑥1𝑧1

𝑧𝑛 = 0
 

𝑥𝑛 = 𝑥1

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑦1 𝑥1⁄
 

 
 With a proper choice of the initial values 𝑥0, 𝑦0, 𝑧0  and the operation mode, the following functions can be directly computed: 

 𝑦1 = 0, rotation mode  𝑦𝑛 = 𝑥1𝑧1 

 𝑧1 = 0, vectoring mode   𝑧𝑛 = 𝑦1 𝑥1⁄  

 
HYPERBOLIC CORDIC 
 This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where 𝑖 is the index of 

the iteration (𝑖 =  1, 2, 3, …). The following iterations must be repeated to guarantee convergence: 𝑖 = 4, 13, 40, … , 𝑘, 3𝑘 + 1. 

𝑥𝑖+1 = 𝑥𝑖 − 𝑖𝑥𝑖2−𝑖

𝑦𝑖+1 = 𝑦𝑖 − 𝑖𝑥𝑖2−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝑖𝑖 , 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)

 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = +1 𝑖𝑓 𝑧𝑖 < 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = +1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 Depending on the mode of operation, the quantities X, Y and Z tend to the following values, for sufficiently large 𝑁: 

Rotation Mode Vectoring Mode 

𝑥𝑛 = 𝐴𝑛(𝑥1𝑐𝑜𝑠ℎ𝑧1 + 𝑦1𝑠𝑖𝑛ℎ𝑧1)

𝑦𝑛 = 𝐴𝑛(𝑦1𝑐𝑜𝑠ℎ𝑧1 + 𝑥1𝑠𝑖𝑛ℎ𝑧1)

𝑧𝑛 = 0
 

𝑥𝑛 = 𝐴𝑛√𝑥1
2 − 𝑦1

2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧1 + 𝑡𝑎𝑛ℎ−1(𝑦1 𝑥1⁄ )

 

𝐴𝑛 ← ∏ √1 − 2−2𝑖𝑁
𝑖=1  (this includes the repeated iterations 𝑖 = 4, 13, 40, …,). For 𝑁 →∝ , 𝐴𝑛 ≅ 0.8 

 
 With a proper choice of the initial values 𝑥1, 𝑦1, 𝑧1  and the operation mode, the following functions can be directly computed: 

 𝑦1 = 0, 𝑥1 = 1 𝐴𝑛⁄ , rotation mode  𝑥𝑛 = 𝑐𝑜𝑠ℎ𝑧1, 𝑦𝑛 = 𝑠𝑖𝑛ℎ𝑧1 

 𝑧1 = 0, 𝑥1 = 1, vectoring mode   𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝑦1) 
 𝑥1 = 𝑦1 = 1 𝐴𝑛⁄ , rotation mode  𝑥𝑛 = 𝑦𝑛 = 𝑐𝑜𝑠ℎ𝑧1 + 𝑠𝑖𝑛ℎ𝑧1 = 𝑒𝑧1 

 𝑥1 = 𝛼 + 1, 𝑦1 = 𝛼 − 1, 𝑧1 = 0, vectoring mode   𝑧𝑛 = 𝑡𝑎𝑛ℎ−1(𝛼 − 1 𝛼 + 1⁄ ) = (ln 𝛼) 2⁄ . 

 𝑥1 = 𝛼 + 1 (4𝐴𝑛
2 )⁄ , 𝑦1 = 𝛼 − 1 (4𝐴𝑛

2 )⁄ , 𝑧1 = 0, vectoring mode   𝑥𝑛 = √𝛼 
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RANGE OF CONVERGENCE 
 
 The basic range of convergence, obtained by a method developed by X. Hu et al, “Expanding the Range of Convergence of 

the CORDIC Algorithm”, results: 
 

Rotation Mode: |𝑧𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

  Circular: 𝑖𝑖𝑛 = 0, 𝑧𝑖𝑛 = 𝑧0, 𝛼𝑖𝑛 = 𝑡𝑎𝑛−1(
𝑦0

𝑥0
⁄ ) 

 Linear: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 =
𝑦1

𝑥1
⁄  

 Hyperbolic: 𝑖𝑖𝑛 = 1, 𝑧𝑖𝑛 = 𝑧1, 𝛼𝑖𝑛 = 𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1
⁄ ). Note that in 

the summation, we must repeat the terms 𝑖 = 4, 13, 40,  
Vectoring Mode: |𝛼𝑖𝑛| ≤ 𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=𝑖𝑖𝑛

 

 
 Circular: 

𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=0

= 𝑡𝑎𝑛−1(2−𝑁) + ∑ 𝑡𝑎𝑛−1(2−𝑖)

𝑁

𝑖=0

= 1.7433 (𝑁 → ∞) 

 

Rotation |𝑧0| ≤ 1.7433 (99.9°) 
Input angle 𝜖 [−99.9°, 99.9°]. Functions with 

angles outside this range can be computed by 

applying trigonometric identities. 

Vectoring |𝑡𝑎𝑛−1(
𝑦0

𝑥0
⁄ )| ≤ 1.7433 (99.9°) →  

𝑦0
𝑥0

⁄ 𝜖〈−∞, ∞〉 
There are no restrictions on the ratio  

𝑦0
𝑥0

⁄ . 

However, we cannot compute the angle for 
values outside the range [−99.9°, 99.9°]. 

 
 Linear: 

𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=1

= 2−𝑁 + ∑ 2−𝑖

𝑁

𝑖=1

= 1 

 

Rotation |𝑧1| ≤ 1 In both cases, there is a strict limitation on the 
input argument of the linear function (e.g. 
multiplication, division) 

Vectoring |
𝑦1

𝑥1
⁄ | ≤ 1 

 
 Hyperbolic: 

𝜃𝑁 + ∑ 𝜃𝑖

𝑁

𝑖=1

= 𝑡𝑎𝑛ℎ−1(2−𝑁) + ∑ 𝑡𝑎𝑛ℎ−1(2−𝑖)

𝑁

𝑖=1

= 1.182 (𝑁 → ∞) 

 

Rotation |𝑧1| ≤ 1.182 
This is the limitation imposed to the input argument 
of the hyperbolic functions. Note that the full 
domain of the functions 𝑠𝑖𝑛ℎ and 𝑐𝑜𝑠ℎ is 〈−∝, ∝〉. 

Vectoring |𝑡𝑎𝑛ℎ−1(
𝑦1

𝑥1
⁄ )| ≤ 1.182 →  |

𝑦1
𝑥1

⁄ | ≤ 0.807 
This is the limitation imposed to the ratio of the 
input arguments of the hyperbolic functions. Note 
that the domain of 𝑡𝑎𝑛ℎ−1 is 〈−1,1〉.  

 
ITERATIVE ARCHITECTURE 
 The architecture is such that the inputs and outputs have an identical bit width. We can reach an optimal number of iterations 

by noticing the iteration at which 𝑖 = 𝑇𝑎𝑛−1(2−𝑖) is equal to zero due to for a particular fixed-point representation. 

𝑛:  input/output bit width 

  𝑛𝑔: additional guard bits on the LSB. 

  𝑛𝑟: 𝑛𝑟 =  𝑛𝑔 +  𝑛 : bit width of the internal registers and operators 

  𝑁: number of iterations (𝑖 =  0,1, … , 𝑁 for circular CORDIC, 𝑖 =  1, … , 𝑁 for linear/hyperbolic CORDIC) 
 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 may require more bits than the final values. A common rule of thumb is “If 𝑛 bits is the desired output precision, the 

internal registers should have ⌈log2 𝑛⌉ additional guard bits at the LSB position”. A more accurate procedure is to perform 

software simulation for a given number of iterations and find out the number of bits required for proper representation of 
the 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 quantities. 

 
Circular CORDIC 
 The figure below depicts the architecture that implements the circular CORDIC equations in an iterative fashion. The LUT 

(look-up table) is needed to store the sets of elementary angles 𝑖 = 𝑇𝑎𝑛−1(2−𝑖). The process begins when a start signal is 

asserted. After 𝑁 clock cycles, the result is obtained in the registers X, Y and Z, and a new process can be started. 

 A state machine, which controls the load of the registers, the data that passes onto the multiplexers, the add/subtract 
decision for the adder/subtractors, and the count given to the barrel shifters and LUT. 
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Hyperbolic CORDIC 

 Here the LUT holds the 𝑖 = 𝑡𝑎𝑛ℎ−1(2−𝑖)  values with 𝑖 = 1,2, … , 𝑁. The FSM is more complex as it has to account for the 

repeated iterations. After 𝑁 − 1 + 𝑣 (𝑣: # of repeated iterations) clock cycles, the result is obtained in the registers X, Y and 

Z, and a new process can be started. 
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Linear CORDIC 
 Here the LUT holds the 𝑖 = 2−𝑖   values with 𝑖 = 1,2, … , 𝑁. After 𝑁 − 1 clock cycles, the result is obtained in the registers X, 

Y and Z, and a new process can be started. Note that we do not need an adder for 𝑥𝑖. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Note that the architectures do not specify the numerical format we are using. We are free to use any format we desire (e.g.: 
fixed point, dual fixed point, floating point). The adders, barrel shifters, and LUT will change depending on the desired 
format. If an arithmetic unit requires more than one cycle to process its date, the FSM needs to account for this. 
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 Example: FX CORDIC with [16 14] 
 
  

0 1 1 0

4
0

16

Xin

4
0

16

Yin

E E

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

Xout Yout

0 1

16

Zin

E

data_Z

Z

next_Z

Zout

16

Tan-1(2-i)

i

e_i

LUT

di

CTRL
Y

Z

s mode

done

di

s
_
x
y
z

E i

+/- +/-

E E

16 16 16

2020

16

20 20

2020 20 20

16

20 20

s_xyz

FSM

Q

counter

0 to 15

E

sclr z

E
i

sc
lr
i

s

4 i

zi

D

E

Q

s_xyz

mode

Z(15)Y(19)

1 0

di

E

CTRL

resetn=0

1

Ei, sclri  1

s

S2

S2

s_xyz  1

E  1

E  1

0

1

zi Ei  1

Ei, sclri  1

FSM

1

done  1

s

S3

0

0



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-378: Computer Hardware Design  Winter 2017 

 

 

14 Instructor: Daniel Llamocca 

FIXED-POINT SQUARE ROOT 
 Algorithms for hardware implementation amount to a ‘binary search’ and can be classified as Restoring and Non-Restoring. 

𝐷 (radical): 2𝑛 bits, 𝑄 (square root): 𝑛 bits. 

Restoring Algorithm Non-Restoring Algorithm 
𝑄 ← 0 
𝑓𝑜𝑟 𝑘 = 𝑛 − 1 → 0 

𝑞𝑘 ← 1 
𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 

𝑞𝑘 ← 0 
𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑞𝑛−1 ← 1 
𝑓𝑜𝑟 𝑘 = 𝑛 − 2 → 0 

𝑖𝑓 𝐷 < 𝑄2 𝑡ℎ𝑒𝑛 
𝑄 ← 𝑄 − 2𝑘 

𝑒𝑙𝑠𝑒 

𝑄 ← 𝑄 + 2𝑘 
𝑒𝑛𝑑 

𝑒𝑛𝑑 

Example: 𝐷 =  40 =  101000, 𝑄 =  000, 𝑛 = 3 
𝑘 = 2: 𝑞2 = 1 (𝑄 = 100) 

40 <  42?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 110) 

40 <  62?  𝑁𝑜 
𝑘 = 0: 𝑞0 = 1 (𝑄 = 111) 

40 <  72?  𝑌𝑒𝑠 →  𝑞0 = 0 (𝑄 = 110) 
Result: 𝑄 = 110, 𝑅 = 𝐷 − 𝑄2 = 0100 

Example: 𝐷 =  40 =  101000, 𝑛 = 3 
𝑞2 = 1 (𝑄 = 100) 
𝑘 = 1: 40 <  42?  𝑁𝑜  𝑄 ← 𝑄 + 21 = 110 
𝑘 = 0: 40 <  62?  𝑁𝑜  𝑄 ← 𝑄 + 20 = 111 

 
Result: 𝑄 = 111, 𝑅 = 𝐷 − 𝑄2? The LSB of the result might 

differ from that of the restoring case. Also, the remainder 
might be incorrect when using this algorithm. 

 
OPTIMIZED NON-RESTORING INTEGER SQRT ALGORITHM 
 This algorithm for non-restoring square root VLSI implementation, described in A New Non-Restoring Square Root Algorithm 

and its VLSI Implementation”, Y. Li, W. Chu, 1996, has proved to outperform most hardware algorithms. A simple addition 
and subtraction is required based on the result bit generated in the previous iteration. No multipliers or multiplexors are 
needed. The result of the addition or subtraction is fed via registers to the next iteration directly even if it is negative. 

 At the last iteration, if the remainder is non-negative, it is the precise remainder. Otherwise, we can get the precise remainder 
by an addition operation, but since it is rarely used, it is dismissed in order to reduce resource consumption. 

 
Radical: 𝐷 = 𝑑2𝑛−1𝑑2𝑛−2𝑑2𝑛−3𝑑2𝑛−4 … 𝑑1𝑑0 
Square Root: 𝑄 = 𝑞𝑛−1𝑞𝑛−2 … 𝑞0 
 
We define: 𝐷𝑘 = 𝑑2𝑛−1𝑑2𝑛−2 … 𝑑𝑘 , 𝑘 = 0,1, … , 𝑛 − 1. 𝐷2𝑘 has 2(𝑛 − 𝑘) bits. 

  𝑄𝑘 = 𝑞𝑛−1𝑞𝑛−2 … 𝑞𝑘 , 𝑘 = 0,1, … , 𝑛 − 1 𝑄𝑘 has 𝑛 − 𝑘 bits. 

 
𝑓𝑜𝑟 𝑘 = 𝑛 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0 
 𝑖𝑓 𝑘 = 𝑛 − 1 𝑡ℎ𝑒𝑛 

𝑅′𝑘 = 𝑑2𝑘+1𝑑2𝑘 − 01 (𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01) 
𝑒𝑙𝑠𝑒 

𝑅′𝑘 = {
𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 − 𝑄𝑘+101, 𝑖𝑓𝑞𝑘+1 = 1

𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 + 𝑄𝑘+111, 𝑖𝑓𝑞𝑘+1 = 0
 

𝑒𝑛𝑑 

𝑞𝑘 = {
1, 𝑖𝑓 𝑅′𝑘 ≥ 0

0, 𝑖𝑓 𝑅′𝑘 < 0
 

𝑒𝑛𝑑 

 

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑅 = 𝑅0 = {
𝑅′0 𝑖𝑓 𝑅′0 ≥ 0

𝑅′0 + 𝑄101, 𝑖𝑓 𝑅′0 < 0
 

 
 Estimated remainder: 𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2 … 𝑟′𝑘 (requires 𝑛 − 𝑘 + 1 bits) The MSB (sign bit) determines the value of 𝑞𝑘 (𝑞𝑘 is 

computed at each iteration). The 𝑅′𝑘 value generated at each iteration is used in the next iteration even if it is negative (the 

2C representation is used here). Note that the operands are always treated as unsigned numbers. 
 Finally, in order to get the actual remainder 𝑅 =  𝑅0, only the 𝑛 + 1 LSBs of 𝑅′0 are needed (the MSB determines 𝑞0). In 

practice, the remainder is seldom needed.  
 
Example: 
𝐷 =  0111111, 𝑛 = 4, 𝑅 = 00000, 𝑄 =  0000 
𝑘 =  𝑛 − 1 = 3:   𝑅’3  = 01 –  01 =  00 , 𝑅’3 = 𝑟′4𝑟′3 =  00, 𝑟’3  ≥ 0 →  𝑞3 = 1  𝑄 = 1000 
𝑘 =  𝑛 − 2 = 2:   𝑅’2  = 𝑅’311 − 𝑄301 = 0011 − 0101 = −10 , 𝑅’2 = 𝑟′4𝑟′3𝑟′2 =  110, 𝑅’2  < 0 →  𝑞2 = 0 𝑄 = 1000 

When the subtraction result is < 0, we use the 2C representation with 𝑛 − 𝑘 + 1 bits. The sign bit decides the value of 𝑞𝑘. 
𝑘 =  1:   𝑅’1  =  𝑅’211 + 𝑄211 = 11011 + 1011 = 100110 , 𝑅’1 = 𝑟′4𝑟′3𝑟′2𝑟′1 =  0110, 𝑅′1  ≥ 0 →  𝑞1 = 1 𝑄 = 1010 
𝑘 = 0:   𝑅’0  =  𝑅’111 − 𝑄101 = 011011 − 10101 = 00110 , 𝑅’0 = 𝑟′4𝑟′3𝑟′2𝑟′1𝑟′0 = 00110, 𝑅’0  ≥ 0 →  𝑞0 = 1 𝑄 = 1011 
Also: 𝑅 = 𝑅’0 = 00110 
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ITERATIVE ARCHITECTURE 
 The size of the elements (registers, adder/subtractor) will be: 

Register R: 𝑛 + 1 bits   Register Q: 𝑛 bits 

Adder/subtractor: 𝑛 + 2 bits. This is because the last iteration requires 𝑅′0 = {
𝑅′1𝑑1𝑑0 − 𝑄101, 𝑖𝑓𝑞1 = 1

𝑅′1𝑑1𝑑0 + 𝑄111, 𝑖𝑓𝑞1 = 0
. 𝑅′1 requires 𝑛 bits, 

thus we need operands with 𝑛 + 2 bits. However, the result 𝑅’0 only requires 𝑛 + 1 bits. Also, for the purposes of subtraction, 

the operands are treated as signed numbers. 
 

(𝑛 + 2)-bit adder/subtractor: the 2 LSBs performs either 𝑥𝑦 − 01 or 𝑥𝑦 + 11, 

𝑥𝑦 = 𝑑2𝑘+1𝑑2𝑘. The operation yields: 𝑐𝑏𝑎, where 𝑐 is the carry-in of the next 

stage of the adder/subtractor, and 𝑏𝑎 the result of the operation.   

 
𝑏𝑎 depends only on 𝑥𝑦, but 𝑐 depends on the operation. However, a standard 

adder/subtractor with carry-in treats the carry-in as in positive logic when 
adding, and as in negative logic when subtracting. This allows us to re-define 
the truth table, where we invert 𝑐 (for subtraction) in the truth table so that 

it works properly in the adder/subtractor with carry in: 
 
Now, 𝑐 and 𝑏𝑎 depend only on ‘xy’: 𝑐 = 𝑥 + 𝑦, 𝑏 = 𝑥𝑦̅̅ ̅̅ ̅̅ , 𝑎 = 𝑦 

  
This reduces the width of the adder/subtractor by 2 bits. 𝑏𝑎, implemented 
with logic gates, is placed on the 2 LSBs of the register 𝑅′, and the carry-in 

comes from the OR gate. Thus, we only need an adder/subtractor with 𝑛 bits 

and a carry-in. 
 
Summation/subtraction operation 
 𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘. For 𝑘 = 0, this operator requires 𝑛 + 2 bits.  

 𝑄𝑘+101 or 𝑄𝑘+111. For 𝑘 = 0, this operator requires 𝑛 + 1 bits (𝑄 𝑘+1 requires 𝑛 − 1 bits) and we need to zero-extend it.  

 Result 𝑅′𝑘: for 𝑘 = 0, it requires 𝑛 + 1 bits. So, for 𝑘 = 0, we only need 𝑛 − 1 bits (LSBs) out of the adder/subtractor (we 

get the other 2 bits from x and y). We use the MSB as the sign bit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The process starts when s = ‘1’. After 𝑛 clock cycles, the result appears in register 𝑄. 

 
COMPUTING MORE PRECISION BITS 
 If 𝑥 more precision bits are needed, we can append 2𝑥 zeros to D. This implies that we need to add 𝑥 extra bits to 𝑄. 

 𝐷𝑝 = 𝐷 × 22𝑥, 𝑄𝑝 = √𝐷𝑝, 𝑄 = √𝐷 

 𝐷𝑝: 2𝑛 + 2𝑥 bits, 𝑄𝑝: 𝑛 + 𝑥 bits. 𝑥: number of precision bits 

𝑄𝑝 = √𝐷𝑝 = √𝐷 × 22𝑥 = √𝐷 × 2𝑥 → 𝑄 = √𝐷 =
𝑄𝑝

2𝑥⁄  

Hardware changes 
 Let’s define: 𝑛𝑞 =  𝑛 + 𝑥. We use 𝑄 with 𝑛𝑞 bits, R with 𝑛𝑞 + 1 bits. The adder/subtractor uses 𝑛𝑞 bits. 

 There is no need to increase the size of the register D. We can still use 2n bits, as ‘00’ is always shifted in (this emulates the 
2𝑥 zeros in the first 𝑥 cycles). In the FSM, C starts with 𝑛𝑞 − 1, the result is obtained after 𝑛𝑞 cycles. 
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Example: (restoring algorithm) 

Get √𝐷 using 𝑥 = 2 precision bits. 𝐷 =  110111 = 55, 𝑛 = 3 

Then: 𝐷𝑝 =  1101110000 = 880. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 

𝑘 = 4: 𝑞4 = 1 (𝑄 = 10000). 880 <  162?  𝑁𝑜 

𝑘 = 3: 𝑞4 = 3 (𝑄 = 11000). 880 <  242?  𝑁𝑜 

𝑘 = 2: 𝑞2 = 1 (𝑄 = 11100). 880 <  282?  𝑁𝑜 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 11110). 880 <  302?  𝑌𝑒𝑠 →  𝑞2 = 0 (𝑄 = 11100) 
𝑘 = 0: 𝑞0 = 1 (𝑄 = 11101). 880 <  292?  𝑁𝑜 

Result: 𝑄𝑝 = 11101, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 100111 

Final Result: 𝑄 = 111.01 = 7.25 ≈ √55 

 
What if the input (let’s call it 𝑫𝒇) is in fixed-point format [𝟐𝒏 𝟐𝒑]? 

 The integer input (called 𝐷) is related to 𝐷𝑓 by: 𝐷𝑓 = 𝐷 × 2−2𝑝. 2𝑛 = number of total bits of 𝐷𝑓. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−2𝑝 = √𝐷 × 2−𝑝 

 So, we first compute the square root of 𝐷 (i.e., 𝐷𝑓 without the fractional point), and then we place the fractional point so 

that the number has 𝑝 fractional bits. 

 
 If we need extra precision bits, we only need to add 2𝑥 zeros to 𝐷. Thus 𝐷𝑝 = 𝐷 × 22𝑥. 

𝑄𝑓 = √𝐷𝑓 = √𝐷 × 2−𝑝 = √𝐷𝑝 × 2−2𝑥 × 2−𝑝 = √𝐷𝑝 × 2−𝑝−𝑥 

 Again, we first compute the square root of 𝐷𝑝, and then we place the fractional point so that the number 𝑄𝑓 has 𝑝 + 𝑥 

fractional bits. 
 
Example (restoring algorithm) 

𝐷𝑓 = 111011.1011 = 59.6875, 𝑝 = 2, 𝑛 = 5. Format [10 4]. 
𝑄𝑓 format: [𝑛 + 𝑥 𝑝 + 𝑥]. 𝑥: extra precision bits. 

 
Step 1: Get the integer D. 
  𝐷 = 1110111011 = 955 

 
Step 2: Add (optionally) 2𝑥 = 4 zeros 

  𝐷𝑝 = 11101110110000 = 15280 

 

Step 3: Get 𝑄𝑝 = √𝐷𝑝 

Then: 𝐷𝑝 =  11101110110000 = 15280. Then 𝑛𝑞 = 𝑛 + 𝑥 = 5 + 2 = 7 
𝑘 = 6: 𝑞6 = 1 (𝑄 = 1000000). 15280 <  642?  𝑁𝑜 

𝑘 = 5: 𝑞5 = 1 (𝑄 = 1100000). 15280 <  962?  𝑁𝑜 

𝑘 = 4: 𝑞4 = 1 (𝑄 = 1110000). 15280 <  1122?  𝑁𝑜 
𝑘 = 3: 𝑞3 = 1 (𝑄 = 1111000). 15280 <  1202?  𝑁𝑜 

𝑘 = 2: 𝑞2 = 1 (𝑄 = 1111100). 15280 <  1242?  𝑌𝑒𝑠 → 𝑞2 = 0 (𝑄 = 1111000) 
𝑘 = 1: 𝑞1 = 1 (𝑄 = 1111010). 15280 <  1222?  𝑁𝑜 

𝑘 = 0: 𝑞0 = 1 (𝑄 = 1111011). 15280 <  1232?  𝑁𝑜 
Result: 𝑄𝑝 = 1111011, 𝑅𝑝 = 𝐷𝑝 − 𝑄𝑝2 = 10010111 

Final Result (𝑝 + 𝑥 = 4): 𝑄𝑓 = 111.1011 = 7.6875 ≈ √59.6875 
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SPECIAL TECHNIQUES 
 

LUT (LOOK UP TABLE) APPROACH 
 In computer architecture, whenever a function is to be evaluated, we usually implement the algorithm that computes that 

function on hardware (e.g. 𝑠𝑞𝑟𝑡, 𝑙𝑛, 𝑒𝑥𝑝). We can always take advantage of the specific properties of the algorithm to optimize 

both speed and resource utilization. 
 Another option is not to compute the function values, but rather to store the values themselves in a LUT (ROM-like 

architecture). In this case, the value is taken directly from the memory rather than computed. For certain scenarios and 
under certain constraints, this idea can lead to more efficient architectures (both in speed and resource consumption). 

 In a LUT, the LUT contents are hardwired. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding one 
bit. It can also be seen as a multiplexor with fixed inputs. A 4-to-1 LUT can implement any 4-input logic function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LARGER LUTS  
 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT: 𝑁𝐼 input bits, 𝑁𝑂 output bits. This circuit can be thought of as a ROM with 2𝑁𝐼 addresses, each address 

holding 𝑁𝑂 bits. 

 A larger LUT can be built by building a circuit that allows for more LUT positions. 
 Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a 

𝑁𝐼 − 𝑡𝑜 − 1 LUT with this method. 
 We can build a 𝑁𝐼 − 𝑡𝑜 − 𝑁𝑂 LUT using 𝑁𝑂 𝑁𝐼 − 𝑡𝑜 − 1 LUTs.  

 
 

 

 

 

 

 

 

 

 

 
 You can implement any function using any desired format (e.g.: integer, fixed-point, dual fixed-point, floating point): 

𝑦 =  𝑓(𝑥), where 𝑦 is represented with 𝑁𝑂 bits, and 𝑥 with 𝑁𝐼 bits. 

 
 The amount of resources increases linearly with the number of output bits (NO). However, the amount of resources grow 

exponentially with the number of input bits (NO).  Thus, this approach is only efficient for small input data sizes (≤ 12 in 

modern FPGAs). 
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